MSSM phenomenology in current colliders

Athanasios Dedes

IPPP, University of Durham

The MSSM structure

Phenomenology at Tevatron and B-factories

Indirect searches : $B_{s,d} \rightarrow \mu^+ \mu^-$

Direct searches : Trileptons

Higgs searches

Conclusions

Supersymmetry

Consider the Lagrangian of a free complex scalar field and a free Weyl spinor field :

$$\mathcal{L} = i \, \bar{\Psi} \, \bar{\sigma}_{\mu} \, \partial^{\mu} \, \Psi \, + \, \partial_{\mu} \, \Phi^* \, \partial^{\mu} \, \Phi$$

Question : Is there any symmetry relating the two ?

Supersymmetry

Consider the Lagrangian of a free complex scalar field and a free Weyl spinor field :

$$\mathcal{L} = i \, \bar{\Psi} \, \bar{\sigma}_{\mu} \, \partial^{\mu} \, \Psi \, + \, \partial_{\mu} \, \Phi^* \, \partial^{\mu} \, \Phi$$

1 deriv2 deriv $\Psi \rightarrow e^{i\beta} \Psi$ $\Phi \rightarrow e^{i\gamma} \Phi$ SeenUnseen

$$\delta\Phi\ =\ a\ \xi\ \Psi$$

Supersymmetry

Consider the Lagrangian of a free complex scalar field and a free Weyl spinor field :

$$\mathcal{L} = i \, \bar{\Psi} \, \bar{\sigma}_{\mu} \, \partial^{\mu} \, \Psi \, + \, \partial_{\mu} \, \Phi^* \, \partial^{\mu} \, \Phi$$

$$\begin{array}{lll} 1 \ \text{deriv} & 2 \ \text{deriv} \\ \Psi \to e^{i\beta} \Psi & \Phi \to e^{i\gamma} \Phi \\ & & \\ \textbf{Seen} & \textbf{Unseen} \end{array}$$

$$\overline{\delta \Psi \ = \ i \ a^* \ \bar{\xi} \ \bar{\sigma}_\mu \ (\partial^\mu \Phi)} \qquad \overline{\delta \Phi \ = \ a \ \xi \ \Psi}$$

Supersymmetry

SUSY Interactions and breaking

$$\Delta \mathcal{L} = \left| \frac{\partial \mathcal{W}(\Phi)}{\partial \Phi} \right|^2 - \left[\frac{1}{2} \frac{\partial^2 \mathcal{W}(\Phi)}{\partial \Phi \partial \Phi} \Psi \Psi + \text{H.c} \right]$$

 $\mathcal{W}(\Phi)$ is an analytic function (superpotential)
 Masses : $\mathcal{W}[\Phi] = \frac{1}{2} \mu \Phi^2$

$$\Delta \mathcal{L} = |\mu|^2 \Phi^2 - \left(\frac{\mu}{2} \Psi \Psi + \text{ H.c}\right)$$

all fields in {Φ, Ψ} have the same mass...
 Supersymmetry must be broken at our energies
 ΔL^{Breaking} = M₀² Φ²

The Lagrangian $\mathcal{L} = i \,\bar{\Psi} \,\bar{\sigma}_{\mu} \,\partial^{\mu} \,\Psi + \partial_{\mu} \,\Phi^* \,\partial^{\mu} \,\Phi$

 $\mathcal{L} = i \,\bar{\Psi} \,\bar{\sigma}_{\mu} (\partial^{\mu} - ig \mathbf{A}^{\mu}) \,\Psi + (\partial_{\mu} - ig \mathbf{A}_{\mu})^* \,\Phi^* \left(\partial^{\mu} - ig \mathbf{A}^{\mu}\right) \Phi$

$$\mathcal{L} = i \bar{\Psi} \bar{\sigma}_{\mu} (\partial^{\mu} - ig \mathbf{A}^{\mu}) \Psi + (\partial_{\mu} - ig \mathbf{A}_{\mu})^{*} \Phi^{*} (\partial^{\mu} - ig \mathbf{A}^{\mu})$$
$$- \frac{1}{4} \mathbf{F}_{\mu\nu} \mathbf{F}^{\mu\nu}$$

$$\mathcal{L} = i \bar{\Psi} \bar{\sigma}_{\mu} (\partial^{\mu} - ig \mathbf{A}^{\mu}) \Psi + (\partial_{\mu} - ig \mathbf{A}_{\mu})^{*} \Phi^{*} (\partial^{\mu} - ig \mathbf{A}^{\mu})$$
$$- \frac{1}{4} \mathbf{F}_{\mu\nu} \mathbf{F}^{\mu\nu} + i \bar{\lambda} \bar{\sigma}_{\mu} \partial^{\mu} \lambda$$

$$\mathcal{L} = i \bar{\Psi} \bar{\sigma}_{\mu} (\partial^{\mu} - ig \mathbf{A}^{\mu}) \Psi + (\partial_{\mu} - ig \mathbf{A}_{\mu})^{*} \Phi^{*} (\partial^{\mu} - ig \mathbf{A}^{\mu})$$
$$- \frac{1}{4} \mathbf{F}_{\mu\nu} \mathbf{F}^{\mu\nu} + i \bar{\lambda} \bar{\sigma}_{\mu} (\partial^{\mu} - ig \mathbf{A}^{\mu}) \lambda$$

$$\mathcal{L} = i \bar{\Psi} \bar{\sigma}_{\mu} (\partial^{\mu} - ig \mathbf{A}^{\mu}) \Psi + (\partial_{\mu} - ig \mathbf{A}_{\mu})^{*} \Phi^{*} (\partial^{\mu} - ig \mathbf{A}^{\mu})$$
$$- \frac{1}{4} \mathbf{F}_{\mu\nu} \mathbf{F}^{\mu\nu} + i \bar{\lambda} \bar{\sigma}_{\mu} (\partial^{\mu} - ig \mathbf{A}^{\mu}) \lambda$$
$$- \frac{1}{2} \frac{\partial^{2} \mathcal{W}}{\partial \Phi \partial \Phi} \Psi \Psi + \text{H.c}$$

where $\mathcal{W} = \frac{1}{2} \mu \Phi^2 + \frac{1}{3} \Upsilon \Phi^3$

$$\mathcal{L} = i \bar{\Psi} \bar{\sigma}_{\mu} (\partial^{\mu} - ig \mathbf{A}^{\mu}) \Psi + (\partial_{\mu} - ig \mathbf{A}_{\mu})^{*} \Phi^{*} (\partial^{\mu} - ig \mathbf{A}^{\mu})$$
$$- \frac{1}{4} \mathbf{F}_{\mu\nu} \mathbf{F}^{\mu\nu} + i \bar{\lambda} \bar{\sigma}_{\mu} (\partial^{\mu} - ig \mathbf{A}^{\mu}) \lambda$$
$$- \frac{1}{2} \frac{\partial^{2} \mathcal{W}}{\partial \Phi \partial \Phi} \Psi \Psi + i \sqrt{2} g \Phi^{*} \Psi \lambda + \text{H.c}$$

$$\mathcal{L} = i \bar{\Psi} \bar{\sigma}_{\mu} (\partial^{\mu} - ig \mathbf{A}^{\mu}) \Psi + (\partial_{\mu} - ig \mathbf{A}_{\mu})^{*} \Phi^{*} (\partial^{\mu} - ig \mathbf{A}^{\mu}) - \frac{1}{4} \mathbf{F}_{\mu\nu} \mathbf{F}^{\mu\nu} + i \bar{\lambda} \bar{\sigma}_{\mu} (\partial^{\mu} - ig \mathbf{A}^{\mu}) \lambda - \frac{1}{2} \frac{\partial^{2} \mathcal{W}}{\partial \Phi \partial \Phi} \Psi \Psi + i \sqrt{2} g \Phi^{*} \Psi \lambda + \text{H.c} - \left| \frac{\partial \mathcal{W}}{\partial \Phi} \right|^{2} - \frac{g^{2}}{2} \left(\Phi^{*} \Phi \right)^{2} \text{where } \mathcal{W} = \frac{1}{2} \mu \Phi^{2} + \frac{1}{3} Y \Phi^{3}$$

$$\mathcal{L} = i \bar{\Psi} \bar{\sigma}_{\mu} (\partial^{\mu} - ig \mathbf{A}^{\mu}) \Psi + (\partial_{\mu} - ig \mathbf{A}_{\mu})^{*} \Phi^{*} (\partial^{\mu} - ig \mathbf{A}^{\mu})$$

$$- \frac{1}{4} \mathbf{F}_{\mu\nu} \mathbf{F}^{\mu\nu} + i \bar{\lambda} \bar{\sigma}_{\mu} (\partial^{\mu} - ig \mathbf{A}^{\mu}) \lambda$$

$$- \frac{1}{2} \frac{\partial^{2} \mathcal{W}}{\partial \Phi \partial \Phi} \Psi \Psi + i \sqrt{2} g \Phi^{*} \Psi \lambda + \text{H.c}$$

$$- \left| \frac{\partial \mathcal{W}}{\partial \Phi} \right|^{2} - \frac{g^{2}}{2} \left(\Phi^{*} \Phi \right)^{2}$$

$$- M_{0}^{2} \Phi^{*} \Phi - B_{0} \Phi \Phi - A_{0} \Phi \Phi \Phi + \text{H.c}$$

The Lagrangian -MSSM structure

$$\begin{aligned} \mathcal{L} &= i \bar{\Psi} \,\bar{\sigma}_{\mu} (\partial^{\mu} - ig \mathbf{A}^{\mu}) \,\Psi + (\partial_{\mu} - ig \mathbf{A}_{\mu})^{*} \,\Phi^{*} \left(\partial^{\mu} - ig \mathbf{A}^{\mu}\right) \\ &- \frac{1}{4} \,\mathbf{F}_{\mu\nu} \,\mathbf{F}^{\mu\nu} + i \bar{\lambda} \,\bar{\sigma}_{\mu} (\partial^{\mu} - ig \mathbf{A}^{\mu}) \,\lambda \\ &- \frac{1}{2} \,\frac{\partial^{2} \mathcal{W}}{\partial \Phi \,\partial \Phi} \Psi \,\Psi \,\,\, + \,\, i \,\sqrt{2} \,g \,\Phi^{*} \,\Psi \,\lambda \,\,\, + \,\,\mathrm{H.c} \\ &- \,\left|\frac{\partial \mathcal{W}}{\partial \Phi}\right|^{2} - \,\frac{g^{2}}{2} \left(\Phi^{*} \,\Phi\right)^{2} \\ &- \,\,M_{0}^{2} \,\Phi^{*} \,\Phi \,\,\, - \,\,B_{0} \,\Phi \,\Phi \,\, - \,\,A_{0} \,\Phi \,\Phi \,\Phi \,\, + \,\,\mathrm{H.c} \\ &- \,\,\frac{M_{1/2}}{2} \,\lambda \,\lambda \,\,\, + \,\,\mathrm{H.c} \end{aligned}$$

MSSM structure

Fields	$SU(3)_C \times SU(2)_L \times U(1)_Y$	Φ Ψ
$Q_r^{i,lpha}$	$(3,2,rac{1}{6})$	$\left(egin{array}{c} ilde{u} \ ilde{d} \end{array} ight)_L, \left(egin{array}{c} u \ d \end{array} ight)_L$
$D_{r,lpha}$	$(ar{3},1,rac{1}{3})$	$ ilde{d}_R$, d_R
$U_{r, \alpha}$	$(ar{3},1,-rac{2}{3})$	$ ilde{u}_R$, u_R
L_r^i	$(1,2,-rac{1}{2})$	$\left(\begin{array}{c}\tilde{\nu}_{e}\\\tilde{e}\end{array}\right)_{L}, \left(\begin{array}{c}\nu_{e}\\e\end{array}\right)_{L}$
E_r	(1 , 1 ,1)	$ ilde{e}_R$, e_R
H_d^i	$(1,2,-rac{1}{2})$	$\left(\begin{array}{c} \tilde{H}^0_d\\ \tilde{H}^d\end{array}\right) \ , \ \left(\begin{array}{c} H^0_d\\ H^d\end{array}\right)$
H_u^i	$(1,2,rac{1}{2})$	$\left(\begin{array}{c} \tilde{H}_{u}^{+} \\ \tilde{H}_{u}^{0} \end{array}\right) \ , \ \left(\begin{array}{c} H_{u}^{+} \\ H_{u}^{0} \end{array}\right) \ .$

MSSM structure

Fields	$SU(3)_C \times SU(2)_L \times U(1)_Y$	λ	\mathbf{A}_{μ}
$V_3^{(R)}$	$({f 8},{f 1},0)$	$\tilde{G}^{(R)}$,	$G^{(R)}_{\mu}$
$V_2^{(\Gamma)}$	(1 , 3 ,0)	$ ilde W^{(\Gamma)}$,	$W^{(\Gamma)}_{\mu}$
V_1	$({f 1},{f 1},0)$	$ ilde{B}$,	B_{μ}

and

$$\tan\beta = \frac{\langle H_u^0 \rangle}{\langle H_d^0 \rangle}$$

Phenomenology in current colliders

Indirect Searches (Tevatron and B-factories)

Rare B-meson decays like $B_{s,d} \rightarrow l^+ l^-$

Recently it has been discovered that such decays are affected by orders of magnitude in the MSSM

$$\blacksquare b \to s\gamma, B \to Kl^+l^-, B \to \phi K_S, ...$$

Direct Searches (Tevatron)

- Neutralinos+Charginos, trileptons in final state
- Squarks and Gluinos
- Higgs boson(s)
- R-parity violation, multilepton events

 $B_{d,s} \to \mu^+ \mu^-$

 $B_{d,s} \to \mu^+ \mu^-$

A. D., and A. Pilaftsis, Phys. Rev. D 67, 015012 (2003) [arXiv:hep-ph/0209306].

Literature on $B_s \rightarrow \mu^+ \mu^-$

MSSM :	 K. S. Babu and C. Kolda, '99, C. Bobeth, T. Ewerth, F. Krüger and J. Urban, '01, '02 G. Isidori, A. Retico, '01,'02 A. Dedes and A. Pilaftsis, '02 A. J. Buras, P. H. Chankowski, J. Rosiek and L. Slawianowska, "02 	
mSUGRA :	 A. Dedes, H. K. Dreiner and U. Nierste, '01 R. Arnowitt, B. Dutta, T. Kamon and M. Tanaka, '02 J. K. Mizukoshi, X. Tata and Y. Wang,'02 A. Dedes, H. K. Dreiner and U. Nierste, P. Richardson, '02 T. Ibrahim and P. Nath, '02 	
SO(10) :	R. Dermisek, S. Raby, L. Roszkowski and R. Ruiz De Austri, '03	
GMSB, AMSB : S. w. Baek, P. Ko and W. Y. Song, '02		
Exp Review :	T. Kamon [CDF Collaboration], '02	
Theory Review	v : A. Dedes , '03.	

Predictions and Experimental Bounds

Standard Model Prediction

$$\mathcal{B}(B_s \to \mu^+ \mu^-) = (3.7 \pm 1.2) \times 10^{-9}$$

$$\mathcal{B}(B_d \to \mu^+ \mu^-) = (1.0 \pm 0.3 \pm 0.3) \times 10^{-10}$$

General MSSM prediction

$$\mathcal{B}(B_s \to \mu^+ \mu^-) = \text{up to } 10^{-5}$$
$$\mathcal{B}(B_d \to \mu^+ \mu^-) = \text{up to } 10^{-6}$$

Predictions and Experimental Bounds

Tevatron CDF/D0 Run II experimental bound

 $\mathcal{B}(B_s \to \mu^+ \mu^-) < 5.8/4.1 \times 10^{-7} \text{ at } 90\% \text{ CL}$

BaBar/Belle experimental bound

 $\mathcal{B}(B_d \to \mu^+ \mu^-) < 8.3/16 \times 10^{-8} \text{ at } 90\% \text{ CL}$

...any evidence at Tevatron or at BaBar/Belle may be a SUSY footprint...

See talk by V. Papadimitriou

mSUGRA predictions

- Dashed : $(g-2)_{\mu}$
- Dotted : Light Higgs mass

A. D, H. Dreiner, U. Nierste, P. Richardson, arXiv:hep-ph/0207026.

Bounding the Higgs sector! A.D, T. Huffman, '04

$$\mathcal{B}(B_s \to \mu^+ \mu^-) \simeq 5 \times 10^{-7} \left(\frac{\tan\beta}{50}\right)^6 \left(\frac{650 \text{ GeV}}{M_A}\right)^4$$

A. Dedes, Thessaloniki, 21-24 April 2005 - p.12/1

• "Gold plated" mode at Tevatron : $q\bar{q'} \rightarrow \chi_1^{\pm}\chi_2^0 \rightarrow 3l + \not\!\!\!E_T$

Arnowitt and Nath '87; Baer, Tata, Paige, Drees '97; Lykken and Matchev '99

Trileptons at Tevatron

Solid :

 $\mathcal{B}(B_s \to \mu^+ \mu^-)$

Dashed :

$$(g-2)_{\mu}$$

- Dotted : Light Higgs mass
- $\blacksquare \mathcal{L} = 10 \text{ fb}^{-1}$
- $\blacksquare \mathcal{L} = 30 \text{ fb}^{-1}$

A. D, H. Dreiner, U. Nierste, P. Richardson, arXiv:hep-ph/0207026.

Trileptons at Tevatron

Solid :

 $\mathcal{B}(B_s \to \mu^+ \mu^-)$

- Dashed : $(g-2)_{\mu}$
- Dotted : Light Higgs mass
- $\blacksquare \mathcal{L} = 2 \text{ fb}^{-1}$
- $\blacksquare \mathcal{L} = 10 \text{ fb}^{-1}$
- $\blacksquare \mathcal{L} = 30 \text{ fb}^{-1}$

A. D, H. Dreiner, U. Nierste, P. Richardson, arXiv:hep-ph/0207026.

• Higgs boson(s) in association with vector bosons $q\bar{q} \rightarrow V^* \rightarrow VH$.

- MSSM predicts three neutral and two charged Higgs bosons. One of the neutral Higgs bosons should weight no more than ~ 150 GeV.
- **Large couplings** $H\overline{b}b$ and $H\overline{\tau}\tau$ at large $\tan\beta$
- Higgs may now be sizeably produced in association with one or more quarks
- **gluon fusion**, $gg \rightarrow H \rightarrow \tau \tau$, is also more effective now

...multi b-jets in final state...

V. Büscher, hep-ex/0411063

Upper limits on the cross section $\sigma \cdot Br(H \rightarrow \tau \tau)$ in comparison with the expected limit.

Conclusions

- MSSM phenomenology is under serious investigation in current colliders
- Indirect Searches (Tevatron B-factories)
 - The rare decay $B_{s,d} \rightarrow \mu^+ \mu^-$ is enhanced by orders of magnitude in the MSSM if $\tan \beta$ is large and the Higgs sector relatively light
- Direct Searches (Tevatron)
 - There is a chance for final state SUSY trilepton events to appear at Tevatron if

 $= \tan \beta$ is small and charginos $\leq 150 \text{ GeV}$

Conclusions

- MSSM Higgs searches
 - large $\tan \beta \gtrsim 40$ region through single or multi b-jets in the final state
 - gluon fusion with taus in the final state

Conclusions

Searches for Supersymmetry are currently highly active at Tevatron and B-factories. Physics can be transferred to LHC and to ... exciting times ahead.