

Study of the Monitored Drift Tube (MDT) efficiencies for the ATLAS test beam data

Athanasia Krepouri*

in collaboration with J-F Laporte** and R.Nicolaidou**

(*) ATLAS Muon group of AUTh Aristotle University of Thessaloniki

(**) Saclay Muon Software group CEA/DAPNIA/SACLAY

HEP 2005

Workshop on Recent Advances in Particle Physics and Cosmology Thessaloniki 21- 24 April 2005

<u>Outline</u>

Description of the experimental set-up

✓ Description of the method for the calculation of the track segment efficiency

Results on track segment efficiency in barrel and endcap chambers

- Efficiency versus energy
- Efficiency versus threshold of read-out electronics

Results on single hit efficiency in barrel and endcap chambers
Conclusions

The ATLAS detector

Introduction

A large scale test stand of the ATLAS detector and the muon spectrometer in particular has been set up at CERN on the H8 beam line

 \succ The main goal of the system is to study and integrate the different aspects of the ATLAS detector.

> For the muon spectrometer the following items are considered:

• Integration of different detector technologies (MDTs, RPCs, TGCs and CSCs)

- Study of the alignment and the detector control system
- Development and optimization of different software tools (e.g. track reconstruction and data acquisition)

<u>The target of these integration tasks is to achieve the best possible resolution</u> <u>for the muon momentum measurement</u>

Experimental H8 setup of the ATLAS muon spectrometer

The aim of this study

The main goal of this study is to measure the muon reconstruction efficiency

A muon track is composed of three different segments in ATLAS (one in each MDT station).

The reconstruction program makes the individual segments, from the MDT hits, and combines them to a single track.

The track reconstruction efficiency shows the performance of the detector and the reconstruction software.

This talk focuses on the measurement of the track segment efficiency

Data Samples

> Different runs for different energies and MDT thresholds were analyzed

> Framework of analysis:

- Atlas reconstruction framework adapted to the H8 setup
- Muons were reconstructed with the reconstruction package Muonboy

Track segment efficiency - Method

Create a reference sample Select events with only one good (nhits ≥max-1) track segment in the two reference stations

Tested station

Reference station

 <u>Compute sagitta</u>
Create the sagitta distribution of the station to be tested

Track segment efficiency

23/4/2005

Track segment efficiency

The plateau of this distribution is reached at the level of 4σ

The plateau is fitted with a horizontal line and the efficiency is obtained by the parameter of the fit.

Track segment efficiency

Barrel chambers					
N-hits	Effi BIL (%)	Effi BML (%)	Effi BOL (%)		
\geq max-2	98.1 ± 0.1	98.2 ± 0.1	98.3 ± 0.1		
\geq max-1	92.7 ± 0.2	94.3 ± 0.1	95.6 ± 0.2		
= max	67.9 ± 0.3	71.5 ± 0.3	75.9 ± 0.4		

Endcap chambers					
N-hits	Effi EIL (%)	Effi EML (%)	Effi EOL (%)		
\geq max-2	96.5 ± 0.1	98.6 ± 0.1	98.7 ± 0.1		
\geq max-1	90.5 ± 0.2	95.6 ± 0.2	96.1 ± 0.1		
= max	63.9 ± 0.3	75.1 ± 0.4	76.3 ± 0.2		

23/4/2005

Efficiency versus Energy

Barrel chambers

The efficiency remains stable for all the energies.

23/4/2005

Efficiency versus Energy

Endcap chambers

Similar behavior for the Endcap chambers

Efficiency versus MDT threshold

Barrel chambers

The efficiency is stable for all the thresholds above the nominal one (40mV), but for the lower one

Efficiency versus MDT threshold

Endcap chambers

Again decrease at the low threshold

23/4/2005

Single hit efficiency

From the track segment efficiency, the single hit efficiency can be derived.

If ε_t is the single hit efficiency then the expected efficiency for a chamber with n layers for n, and (n-1) hits is computed by the following formulas

$$\begin{aligned} \mathbf{\mathcal{E}}_{n-\text{hits}} &= \left(\mathbf{\mathcal{E}}_{t}\right)^{n} \\ \mathbf{\mathcal{E}}_{(n-1)-\text{hits}} &= \frac{n!}{(n-1)! \cdot 1!} \left(\mathbf{\mathcal{E}}_{t}\right)^{(n-1)} \cdot \left(1 - \mathbf{\mathcal{E}}_{t}\right) \end{aligned}$$

Single hit efficiency

Barrel chambers					
N-hits	Effi BIL (%)	Effi BML (%)	Effi BOL (%)		
= max-1	95.6 ± 0.1	95.1 ± 0.2	95.8 ± 0.2		
= max	95.3 ± 0.1	94.6 ± 0.1	95.5 ± 0.1		

Endcap chambers					
N-hits	Effi EIL (%)	Effi EML (%)	Effi EOL (%)		
= max-1	95.3 ± 0.1	95.8 ± 0.2	95.9 ± 0.2		
= max	94.6 ± 0.1	95.3 ± 0.1	95.6 ± 0.1		

Conclusions

 The muon track segment efficiency in ATLAS is measured with test beam data

- It is found the same for both barrel and endcap chambers
- It is independent of the muon energy.
- It is stable for thresholds above the nominal (40mV) and falls for lower thresholds

• The single hit efficiencies for barrel and endcap chambers were derived from the track segment efficiency. They are of the order of 95% for both of them.