ATLAS Muon Testbeam 2004

Rachel-Maria Avramidou University of Michigan

Hellenic Society for the Study of High Energy Physics 2005 Workshop on Recent Advances in Particle Physics and Cosmology AUTH 21-24 APRIL 2005

■ ATLAS Detector Muon Spectrometer Muon testbeam 2004 – Setup - Test beam objectives - Data Sets - Analysis methods - Results

Combined testbeam 2004
Conclusions

ATLAS Detector

Muon Spectrometer – Muon Drift Chambers

Muon Spectrometer

Muon Drift Chamber

2 multilayers in a distance 7 mm 8 layers

30 drift tubes per layer of length 1.7 m

Muon Drift Tube

Stand-alone Muon Spectrometer H $\rightarrow \mu^+\mu^-\mu^+\mu^-$ Aluminium tube of diameter 30 mm Anode wire W-Re of diameter 50 μm

Muon H8 Setup

H8 Muon Testbeam 2004

<u>The 2003 muon setup included</u>

6+3 barrel MDTs fully equipped with alignment system and elx

4 RPC BML (low-Pt) stations and 2 RPC BOL (high-Pt) stations equipped with elx 6 EC MDTs fully equipped with alignment system and elx

1 TGC triplet and 2 TGC doublets equipped with trigger elx

2 beam magnets used to steer the beam

Scintillator triggers (10×10 cm², 60×100 cm²)

<u>Data analysis</u>

Studies of long term stability of MDT performance and readout (r(t) relations, noise, inefficiencies, single tube resolution, sagitta resolution, comparison with G4) Alignment tests: studied with large displacements and induced deformations RPC and TGC: detector and trigger performance

<u>Software</u>

Athena framework (reconstruction with Moore and Muonboy, Ntuples for the analysis)

Calib (Rome), Mutrak (Michigan), Munich code for calibration

2004 Testbeam was successful Aims achieved and many analyses have been done

Electronics Studies

A survey of data for ***ALL*** H8 chambers has been done

Endcap chambers 1920 channels (0 problematic channels) Barrel chambers 2016 channels (7 problematic channels-0.3%)

99.8 % of channels functioned as expected

Testbeam 2004 program

2004 ATLAS Test Beam Schedule (SPS)

Version 0.4 - 05/02/2004 Based on SPS draft 0.2 04/02/2004 10 May - 1 November 2004

			Ρ	1 A			P1B			P1C				P2A P2B					P2C					P2D										
Beam Line	Subdetector		M	lay					June				July				August				September					October								
		10	12	18	27	2	7	8	14	19	24	30	7	15	21	28	5	11	18	25	30	1	7	1	5 2	2 2	25 2	8 2	9	5	14	20	23	25
	Pixel				E		25	25		HI	С	С		С			VLE	HI	HI								ł	g 2	5		HI			
	SCT				Ε		25	25			С	С		С			VLE	С	С									g 2!	5					
	TRT				Ε		25	25			С	С	LE	С			VLE	С	С								20	g 2!	5					
	LAr barrel					8	8		8)				С				С	С			YLE							5					
по/ 5P5	Tilecal				Έ	qq	25	25	9		EB	VLE		С			VLE	С	С			YLE					9;	g 2	5				ę	
	Muons	С	С		E	E	25	25	R								VLE	С	С			YLE						3 2	5		С			
	LVL1 Calo					ŝ	25	25	Š								VLE	С	С			YLE					5	g 2!	5					
	LVL1 Muons		С		E		25	25									VLE	С	С			YLE						3 2	5		С			
H6/SPS	EMEC/HEC/FCAL																											23	5					
X5-GIF/SPS		C	sc/r	RPC													MD1	r MD1	MD	Т							MDT	/RPO	:					
CCo-user periodsLELow energy period2525 nsec periodEEqual user periodEBTile ExtBarrelVLEVery low energyHIHigh intensity I							erio erio gy gy b	od d per	'iod m																									

Normal MD: 8h, stops at 8h restarts at 16h Long MD: 24h, stops at 10h restarts at 10h Yery Long MD: 32h, stops at 8h restart at 16h

Measurement program for 2004 test

Quite ambitious program for the muon spectrometer system

- General stability and uniformity test
- Study of sagitta resolution
- Alignment studies with calibrated systems
- Beam muons momentum measurement
- Test of CSC chambers performance
- Test of RPC and TGC performance (new electronics)

Sagitta Studies

Motivation: Determination of the sagitta width as a function of beam energy (100-250 GeV) for the muon chambers and comparison with the results coming from G4 simulation.

Sagitta definition

Distance of closest approach of EML impact parameter to the line connecting EIL-EOL superpoints.

<u>Sagitta</u>

✓ Sagitta reconstruction based on EIL/BIL, EML/BML, EOL/BOL segments

✓ Second coordinate information taken from BOL/BML-RPC

Athena framework - Moore

✓ Release 10.0.0

✓ Calibration files from CALIB package

Sagitta Studies

Procedure

- A run with Rotating BILR moving For the r-t relation measurement
- A run with Rotating BILR fixed and magnet current OFF (0 A)
- For the measurement of the misalignment between BILR and Barrel/Endcap chambers
- A run with Rotating BILR fixed and magnet current ON (600 A)

For the measurement of the beam momentum and the Barrel/Endcap chambers sagitta

Nominal momentum		Run files	Threshold	Trigger
	250 GeV	600724-600725	40 mV	10×10
	220 GeV	600847-600850	40 mV	10×10
	180 GeV	600964-600966	40 mV	10×10
	150 GeV	601089-601095	40 mV	10×10 11
	100 GeV	601131-601135	40 mV	10×10

Sagitta Studies

RUN 600964

Sagitta Studies – No RPC Cuts

		Endcap Sagitta	h1
Beam Energy	Sagitta Width	1400	
(GeV)	(µm)		Entries 32000
250	187 ± 1		Mean 5.452
		1000	RMS 0.2434
220	193 ± 1		
			χ^2 / ndf 45.21 / 27
180	223 ± 2	600	Constant 1341±11.5
150	256 ± 3		Mean 5.452 ± 0.001
100		200 - 1	Sigma 0.1867 ± 0.0014
100	350 ± 4		
		4 4.5 5 5.5	6 6.5 7

Sagitta Studies

BOL RPC

Selection of the four most illuminated strips

Sagitta Studies – P Cuts

աներեն

100 İ

Sagitta Studies – P & RPC Cuts

Momentum (P- σ <P<P+ σ) + RPC cuts

Beam Momentum (GeV)	Measured Momentum (GeV)	Barrel Sagitta Width (µm)	Endcap Sagitta Width (µm)
250	227 ± 17	65 ± 3	164 ± 8
220	204 ± 12	66 ± 1	175 ± 8
180	165 ± 7	70 ± 1	209 ± 14
150	137 ± 6	83 ± 1	242 ± 17
100	89 ± 5	102 ± 3	330 ± 16

Sagitta Studies – Endcap chambers Multiple Scattering contribution

	Multiple scattering contribution to sagitta resolution		EM S θ_0 Z_2	E0 S' Z ₃		
333 cm	$\sigma(S_{m.s.}) = \frac{(Z_2 - Z_1)(Z_3 - Z_2)}{(Z_3 - Z_1)} \tan\theta_0$	Beam Momentum (GeV)	Sagitta (µm)	Sagitta (µm) (+Intrinsic Resolution=50 µm)		
	where	250	152 ± 11	160 ± 11		
		220	169 ± 10	176 ± 10		
$\theta_0 = \frac{13.6 MeV}{\sqrt{3}}$	$\overline{\mathbf{x} / \mathbf{X}_0} \left[1 + 0.0038 \ln(\mathbf{x} / \mathbf{X}_0) \right]$	180	209 ± 9	215 ± 9		
p		150	253 ± 12	257 ± 12		
	(z^2)	120	320 ± 12	324 ± 12		
Total Sagitta <mark>σ(</mark> Ω	$S) = \sqrt{\sigma(S_{i.r.}^2) + \sigma(S_{m.s.}^2)}$	100	387 ± 20	390¹ <u></u> 20		

Sagitta Studies - Endcap Chambers

G4 Simulation \rightarrow 120 µm for energy 227 GeV Aluminum I-beam not simulated \rightarrow 88 µm

(149±11) μm

(157±11) µm

Intrinsic Resolution=50 µm

Simulation for endcap sagitta all the other energies will be done in the close future

Sagitta Studies – Barrel Chambers

Beam Momentum (GeV)	Sagitta (µm)	Sagitta (µm) (+Intrinsic Resolution=50 µm)						
250	40 ± 3	64 ± 3						
220	45 ± 3	67 ± 3						
180	55 ± 2	74 ± 2						
150	67 ± 3	84 ± 3						
100	103 ± 6	115 ± 6						

Combined Testbeam 2004

A small scale experiment based on ATLAS subdetectors **Integration of detectors** Integration of the electronics, synchronization Integration of detectors with DAQ and Trigger System test, chamber performance Synchronization, timing **Integration of hardware/software** Trigger **Implement full trigger chain** Use the trigger chain to trigger Use of new reconstruction tools **Request for physics studies for the understanding the detector** and tuning of MC **Real stand-alone runs Combined calorimetry measurements ID-Muons tracking** Particle ID studies

Combined Testbeam 2004

H8-2004 Combined Testbeam Muon system : 15 MDTs, 7 RPCs, 3 TGCs, 1 CSC Calorimeters (LAr, Tile), Inner Detector, 3 magnets

Combined reconstruction with inner detector Muons out of the Tile Calorimeter Integration of DAQ and Trigger a la ATLAS

Conclusions

Muon 2004 test beam was a success in terms

- Electronics commissioning
- Alignment system performance
- MDT performance
- TGC/RPC response
- **Experience**, detector understanding, solved problems and data analysis

Testbeam provides the chance to perform installation, commissioning, integration and operation exercise in a realistic environment

Full muon system tested and integrated

All aspects from services (grounding, cabling,...) to high level software (track reconstruction, monitoring, condition database,...) are covered

Combined 2004 test beam was as much as possible an *ATLAS-like* detector concerning *hardware* and *software*